两个对象值相同(x.equals(y) == true),但是可能存在hashCode不同吗?

这道题仍然是考察JVM层面的基本知识,面试官认为,基本功扎实,才能写出健壮性和稳定性很高的代码。

涉及到的技术知识

(x.equals(y)==true),这段代码,看起来非常简单,但其实里面还是涉及了一些底层知识点的,首先我们基于equals这个方法进行探索。

equals这个方法,在每个对象中都存在,以String类型为例,其方法定义如下

public boolean equals(Object anObject) {
  if (this == anObject) { 
    return true;
  }
  if (anObject instanceof String) { //判断对象实例是否是String
    String anotherString = (String)anObject; //强转成string类型
    int n = value.length;
    if (n == anotherString.value.length) { //如果两个字符串相等,那么它们的长度自然相等。
      //遍历两个比较的字符串,转换为char类型逐个进行比较。
      char v1[] = value;  
      char v2[] = anotherString.value;
      int i = 0;
      while (n-- != 0) {
        if (v1[i] != v2[i]) //采用`==`进行判断,如果不相同,则返回false
          return false;
        i++;
      }
      return true; //否则返回true。
    }
  }
  return false;
}

首先来分析第一段代码,判断传递进来的这个对象和当前对象实例this是否相等,如果相等则返回true

  if (this == anObject) { 
    return true;
  }

==号的处理逻辑是怎么实现的呢?

了解==判断

在Java语言中==操作符号,这个比较大家都知道,是基于引用对象的比较,具体其实还有一些其他的区别。

JVM会根据==两边相互比较的操作类型不同,在编译时生成不同的指令。

  1. 对于boolean,byte、short、int、long这种整形操作数,会生成if_icmpne指令,该指令用于比较整形数值是否相等。关于if_icmpne指令可以参见:Chapter 4. The class File Format,它在Hotspot VM中的bytecodeInterpreter源码中的具体实现如下
    #define COMPARISON_OP(name, comparison)                        
    CASE(_if_icmp##name): {                                  
      int skip = (STACK_INT(-2) comparison STACK_INT(-1))  
        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;   
      address branch_pc = pc;                              
      UPDATE_PC_AND_TOS(skip, -2);                         
      DO_BACKEDGE_CHECKS(skip, branch_pc);                 
      CONTINUE;                                            
    }
    
    可以看到实质是按照comparison表达式比较操作数栈中偏移量为-1和-2的两个INT值。
  2. 如果操作数是对象的话,编译器则会生成if_acmpne 指令,与if_icmpne 相比将i(int)改成了a(object reference)。这个指令在JVM规范中的表述:Chapter 4. The class File Format,它在Hotspot VM中相应的实现可参考:
    COMPARISON_OP(name, comparison)                          
      CASE(_if_acmp##name): {                                  
      int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1))  
        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;  
      address branch_pc = pc;                              
      UPDATE_PC_AND_TOS(skip, -2);                         
      DO_BACKEDGE_CHECKS(skip, branch_pc);                 
      CONTINUE;                                            
    }
    
    STACK_OBJECT(-2) comparison STACK_OBJECT(-1)这一句即可看出比较的其实是操作数栈上两个对象在堆中的指针。

对于JVM有一定了解得同学,必然知道((x==y)=true)这个判断,如果xy的内存地址相同,那么意味着就是同一个对象,因此直接返回true

因此从上面的分析中,得到的结论是,==判断,比较的是两个对象的内存地址,如果==返回true,说明内存地址相同。

String.equals源码

继续分析equals中的源码,剩余部分源码的实现逻辑是

  1. 比较两个字符串的长度是否相等,如果不相等,直接返回false
  2. 把两个String类型转换为char[]数组,并且按照数组顺序逐步比较每一个char字符,如果不相等,同样返回false
public boolean equals(Object anObject) {
  //省略
  if (anObject instanceof String) { //判断对象实例是否是String
    String anotherString = (String)anObject; //强转成string类型
    int n = value.length;
    if (n == anotherString.value.length) { //如果两个字符串相等,那么它们的长度自然相等。
      //遍历两个比较的字符串,转换为char类型逐个进行比较。
      char v1[] = value;  
      char v2[] = anotherString.value;
      int i = 0;
      while (n-- != 0) {
        if (v1[i] != v2[i]) //采用`==`进行判断,如果不相同,则返回false
          return false;
        i++;
      }
      return true; //否则返回true。
    }
  }
  return false;
}

==和equals

通过上面的分析,我们知道,在 Java 中比较两个对象是否相等主要是通过 ==号,比较的是他们在内存中的存放地址。Object 类是 Java 中的超类,是所有类默认继承的,如果一个类没有重写 Object 的 equals方法,那么通过equals方法也可以判断两个对象是否相同,因为它内部就是通过==来实现的。

public boolean equals(Object obj) {
  return (this == obj);
}

这里的相同,是说比较的两个对象是否是同一个对象,即在内存中的地址是否相等。而我们有时候需要比较两个对象的内容是否相同,即类具有自己特有的“逻辑相等”概念,而不是想了解它们是否指向同一个对象。

例如比较如下两个字符串是否相同String a = "Hello"String b = new String("Hello"),这里的相同有两种情形,是要比较 a 和 b 是否是同一个对象(内存地址是否相同),还是比较它们的内容是否相等?这个具体需要怎么区分呢?

如果使用 == 那么就是比较它们在内存中是否是同一个对象,但是 String 对象的默认父类也是 Object,所以默认的equals方法比较的也是内存地址,所以我们要重写 equals方法,正如 String 源码中所写的那样。

  1. 先比较内存地址
  2. 再比较value值
public boolean equals(Object anObject) {
  //省略
  if (anObject instanceof String) { //判断对象实例是否是String
    String anotherString = (String)anObject; //强转成string类型
    int n = value.length;
    if (n == anotherString.value.length) { //如果两个字符串相等,那么它们的长度自然相等。
      //遍历两个比较的字符串,转换为char类型逐个进行比较。
      char v1[] = value;  
      char v2[] = anotherString.value;
      int i = 0;
      while (n-- != 0) {
        if (v1[i] != v2[i]) //采用`==`进行判断,如果不相同,则返回false
          return false;
        i++;
      }
      return true; //否则返回true。
    }
  }
  return false;
}

这样当我们 a == b时是判断 a 和 b 是否是同一个对象,a.equals(b)则是比较 a 和 b 的内容是否相同,这应该很好理解。

JDK 中不止 String 类重写了equals 方法,还有数据类型 Integer,Long,Double,Float等基本也都重写了 equals 方法。所以我们在代码中用 Long 或者 Integer 做业务参数的时候,如果要比较它们是否相等,记得需要使用 equals 方法,而不要使用 ==

因为使用 ==号会有意想不到的坑出现,像这种数据类型很多都会在内部封装一个常量池,例如 IntegerCache,LongCache 等等。当数据值在某个范围内时会直接从常量池中获取而不会去新建对象。

如果要使用==,可以将这些数据包装类型转换为基本类型之后,再通过==来比较,因为基本类型通过==比较的是数值,但是在转换的过程中需要注意 NPE(NullPointException)的发生。

了解Class中的HashCode

回过头再看一下面试题: 两个对象值相同(x.equals(y) == true),但是可能存在hash code不同吗?

这个结果返回true,假设xy是String类型,意味着它满足两个点。

  1. xy有可能是同一个内存地址。
  2. xy这两个字符串的值是相同的。

基于这两个推断,我们还没办法和hash code联系上,也就是说,这两个对象的引用地址相同,和hashCode是否有关系?

在Java中,任何一个对象都是派生自Object,而在Object中,有一个native方法hashCode()

public native int hashCode();

为什么要有hashCode?

对于包含容器结构的程序语言来说,基本上都会涉及到hashCode,它的主要作用是为了配合基于散列的集合一起工作,比如HashSet、HashTable、ConcurrentHashMap、HashMap等。

在这类的集合中添加元素时,首先需要判断添加的元素是否存在(不允许存在重复元素),也许大多数人都会想到调用equals方法来逐个进行比较,这个方法确实可行。但是如果集合中已经存在一万条数据或者更多的数据,如果采用equals方法去逐一遍历每个元素的值进行比较,效率会非常低。

此时hashCode方法的作用就体现出来了,当集合要添加新的对象时,先调用这个对象的hashCode方法,得到对应的hashcode值,实际上在HashMap的具体实现中会用一个table保存已经存进去的对象的hashcode值:

  1. 如果table中没有该hashcode值,它就可以直接存进去,不用再进行任何比较了;
  2. 如果存在该hashcode值, 就调用它的equals方法与新元素进行比较,相同的话就不存了,不相同就散列其它的地址,所以这里存在一个冲突解决的问题,这样一来实际调用equals方法的次数就大大降低了.

说通俗一点:Java中的hashCode方法就是根据一定的规则将与对象相关的信息(比如对象的存储地址,对象的字段等)映射成一个数值,这个数值称作为散列值。下面这段代码是java.util.HashMap的中put方法的具体实现:

public V put(K key, V value) {
  if (key == null)
    return putForNullKey(value);
  int hash = hash(key.hashCode());
  int i = indexFor(hash, table.length);
  for (Entry<K,V> e = table[i]; e != null; e = e.next) {
    Object k;
    if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
      V oldValue = e.value;
      e.value = value;
      e.recordAccess(this);
      return oldValue;
    }
  }

  modCount++;
  addEntry(hash, key, value, i);
  return null;
}

所以通过hashCode,减少了查询比较的次数,优化了查询的效率同时也就减少了查询的时间。

hashCode方法的实现

下面是hashCode这个方法的完整注释说明。

 /**
     * Returns a hash code value for the object. This method is
     * supported for the benefit of hash tables such as those provided by
     * {@link java.util.HashMap}.
     * <p>
     * The general contract of {@code hashCode} is:
     * <ul>
     * <li>Whenever it is invoked on the same object more than once during
     *     an execution of a Java application, the {@code hashCode} method
     *     must consistently return the same integer, provided no information
     *     used in {@code equals} comparisons on the object is modified.
     *     This integer need not remain consistent from one execution of an
     *     application to another execution of the same application.
     * <li>If two objects are equal according to the {@code equals(Object)}
     *     method, then calling the {@code hashCode} method on each of
     *     the two objects must produce the same integer result.
     * <li>It is <em>not</em> required that if two objects are unequal
     *     according to the {@link java.lang.Object#equals(java.lang.Object)}
     *     method, then calling the {@code hashCode} method on each of the
     *     two objects must produce distinct integer results.  However, the
     *     programmer should be aware that producing distinct integer results
     *     for unequal objects may improve the performance of hash tables.
     * </ul>
     * <p>
     * As much as is reasonably practical, the hashCode method defined by
     * class {@code Object} does return distinct integers for distinct
     * objects. (This is typically implemented by converting the internal
     * address of the object into an integer, but this implementation
     * technique is not required by the
     * Java™ programming language.)
     *
     * @return  a hash code value for this object.
     * @see     java.lang.Object#equals(java.lang.Object)
     * @see     java.lang.System#identityHashCode
     */
public native int hashCode();

从注释的描述可以知道,hashCode 方法返回该对象的哈希码值。它可以为像 HashMap 这样的哈希表有益。Object 类中定义的 hashCode 方法为不同的对象返回不同的整形值。具有迷惑异议的地方就是This is typically implemented by converting the internal address of the object into an integer这一句,意为通常情况下实现的方式是将对象的内部地址转换为整形值。

如果你不深究就会认为它返回的就是对象的内存地址,我们可以继续看看它的实现,但是因为这里是 native 方法所以我们没办法直接在这里看到内部是如何实现的。native 方法本身非 Java 实现,如果想要看源码,只有下载完整的 JDK 源码,Oracle 的 JDK 是看不到的,OpenJDK 或其他开源 JRE 是可以找到对应的 C/C++ 代码。我们在 OpenJDK 中找到 Object.c 文件,可以看到hashCode 方法指向 JVM_IHashCode 方法来处理。

static JNINativeMethod methods[] = {
    {"hashCode",    "()I",                    (void *)&JVM_IHashCode},
    {"wait",        "(J)V",                   (void *)&JVM_MonitorWait},
    {"notify",      "()V",                    (void *)&JVM_MonitorNotify},
    {"notifyAll",   "()V",                    (void *)&JVM_MonitorNotifyAll},
    {"clone",       "()Ljava/lang/Object;",   (void *)&JVM_Clone},
};

JVM_IHashCode方法实现在 jvm.cpp中的定义为:

JVM_ENTRY(jint, JVM_IHashCode(JNIEnv* env, jobject handle))  
  JVMWrapper("JVM_IHashCode");  
  // as implemented in the classic virtual machine; return 0 if object is NULL  
  return handle == NULL ? 0 : ObjectSynchronizer::FastHashCode (THREAD, JNIHandles::resolve_non_null(handle)) ;  
JVM_END 

这里是一个三目表达式,真正计算获得 hashCode 值的是ObjectSynchronizer::FastHashCode,它具体的实现在synchronizer.cpp中,截取部分关键代码片段。

intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
  if (UseBiasedLocking) {
  
  //省略代码片段
  
  // Inflate the monitor to set hash code
  monitor = ObjectSynchronizer::inflate(Self, obj);
  // Load displaced header and check it has hash code
  mark = monitor->header();
  assert (mark->is_neutral(), "invariant") ;
  hash = mark->hash();
  if (hash == 0) {
    hash = get_next_hash(Self, obj);
    temp = mark->copy_set_hash(hash); // merge hash code into header
    assert (temp->is_neutral(), "invariant") ;
    test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
    if (test != mark) {
      // The only update to the header in the monitor (outside GC)
      // is install the hash code. If someone add new usage of
      // displaced header, please update this code
      hash = test->hash();
      assert (test->is_neutral(), "invariant") ;
      assert (hash != 0, "Trivial unexpected object/monitor header usage.");
    }
  }
  // We finally get the hash
  return hash;
}

从以上代码片段中可以发现,实际计算hashCode的是 get_next_hash,该方法的部分代码定义如下。

static inline intptr_t get_next_hash(Thread * Self, oop obj) {
  intptr_t value = 0 ;
  if (hashCode == 0) {
     // This form uses an unguarded global Park-Miller RNG,
     // so it's possible for two threads to race and generate the same RNG.
     // On MP system we'll have lots of RW access to a global, so the
     // mechanism induces lots of coherency traffic.
     value = os::random() ;
  } else
  if (hashCode == 1) {
     // This variation has the property of being stable (idempotent)
     // between STW operations.  This can be useful in some of the 1-0
     // synchronization schemes.
     intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3 ;
     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
  } else
  if (hashCode == 2) {
     value = 1 ;            // for sensitivity testing
  } else
  if (hashCode == 3) {
     value = ++GVars.hcSequence ;
  } else
  if (hashCode == 4) {
     value = cast_from_oop<intptr_t>(obj) ;
  } else {
     // Marsaglia's xor-shift scheme with thread-specific state
     // This is probably the best overall implementation -- we'll
     // likely make this the default in future releases.
     unsigned t = Self->_hashStateX ;
     t ^= (t << 11) ;
     Self->_hashStateX = Self->_hashStateY ;
     Self->_hashStateY = Self->_hashStateZ ;
     Self->_hashStateZ = Self->_hashStateW ;
     unsigned v = Self->_hashStateW ;
     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
     Self->_hashStateW = v ;
     value = v ;
  }
  value &= markOopDesc::hash_mask;
  if (value == 0) value = 0xBAD ;
  assert (value != markOopDesc::no_hash, "invariant") ;
  TEVENT (hashCode: GENERATE) ;
  return value;
}

get_next_hash的方法中我们可以看到,如果从0开始算的话,这里提供了6种计算hash值的方案,有自增序列,随机数,关联内存地址等多种方式,其中官方默认的是最后一种,即随机数生成。可以看出hashCode也许和内存地址有关系,但不是直接代表内存地址的,具体需要看虚拟机版本和设置。

上面的整体描述还是比较复杂,直接说结论:

  1. 一个对象的hashCode,默认情况下如果没有重写,则由JVM中的get_next_hash方法来生成,这个生成的方式不一定和内存地址有关,默认是用随机数生成。两个不同的对象,他们生成的hashCode可能会相同,如果存在这个问题,就是所谓的hash冲突,在HashMap中,解决hash冲突的方法是链式寻址法。
  2. 使用==这个表达式判断,如果返回true,意味着两个对象的hashCode一定相同。

问题解答

问题:两个对象值相同(x.equals(y) == true),但是可能存在hashCode不同吗?

基于上面背景知识的梳理,再来回答这个问题,就有思路了。

理论情况下,x.equals(y)==true,如果没有重写equals这个方法,这两个对象的内存地址是是相同的,也就意味着hashCode必然也相等。

那有没有可能hashCode不同呢? 如果一定要做,也是可以实现的,我们来看下面这个例子。

public class App 
{
    public static void main( String[] args ) {
        A a = new A();
        B b = new B();
        System.out.println(a.equals(b));
        System.out.println(a.hashCode() + "," + b.hashCode());
    }
}
class A {
    @Override
    public boolean equals(Object obj) {
        return true;
    }
}
class B {
}

运行结果如下

true
692404036,1554874502

从结果可以看到,equals返回true,但是hashCode不同。

虽然我们模拟了这个可能性,但是原则上是错误的,因为这样违反了hashCode的通用规定,可能会导致该类无法结合所有基于散列集合一起正常工作,比如HashMap、HashSet等。

public class App {
    public static void main( String[] args ) {
        Person p1=new Person("mic",18);
        Person p2=new Person("mic",18);
        HashMap<Person,String> hashMap=new HashMap<>();
        hashMap.put(p1,"mic");
        System.out.println(hashMap.get(p2));
    }
}
class Person {
    private String name;
    private int age;
    public Person(String name, int age) {
        this.name = name;
        this.age = age;
    }
   //省略getter/setter
    @Override
    public boolean equals(Object obj) {
        if(this==obj){
            return true;
        }
        if(obj instanceof Person){
            if(this.getName()==((Person) obj).getName()&&this.getAge()==((Person) obj).getAge()){
                return true;
            }
        }
        return false;
    }
}

在上述代码中,重写了equals方法,但是没有重写hashCode方法,当调用Person类的hashCodo方法时,默认就是调用父类Object的hashCode方法,根据随机数返回一个整数值。在equals方法中,我们是根据nameage进行判断两个对象是否相等。

main方法中构建了两个对象p1p2,我们用HashMap存储存储,将对象作为key。把p1存入到hashMap中,再通过p2来获取,在原则上,由于p1和p2相等,所以理论上是能够拿到结果的,但是实际运行结果如下:

null
Process finished with exit code 0

熟知`HashMap 原理的同学应该知道,HashMap 是由数组 + 链表的结构组成,这样的结果就是因为它们 hashCode 不相等,所以放在了数组的不同下标,当我们根据 Key 去查询的时候结果就为 null。

得到的结果我们肯定不满意,这里的 p1p2 虽然内存地址不同,但是它们的逻辑内容相同,我们认为它们应该是相同的。

为了避免这类问题的存在,所以约定了一条原则重写equals方法的同时也需要重写hashCode方法 。这时一种通用约定,这个约定包含以下几个方面。

  • 方法都必须始终返回同一个值。
  • 如果两个对象根据equals方法比较是相等的,那么调用这两个对象中的hashCode方法都必须产生同样的整数结果。
  • 如果两个对象根据equals方法比较是不相等的,那么调用者两个对象中的hashCode方法,则不一定要求hashCode方法必须产生不同的结果。但是给不相等的对象产生不同的整数散列值,是有可能提高散列表(hash table)的性能。

从理论上来说如果重写了equals方法而没有重写hashCode方法则违背了上述约定的第二条,相等的对象必须拥有相等的散列值 。但是规则是大家默契的约定,如果我们就喜欢不走寻常路,在重写了 equals方法后没有覆盖hashCode方法,就会造成严重的后果。

问题总结

综合分析下来,对于该问题的正确解答如下

  1. 如果两个对象值相同,有可能存在不同的hashCode。具体的实现方法是,只重写equals方法,不重写hashCode
  2. 这种处理方式会存在风险,在实际开发中,必须遵循重写equals方法的同时也需要重写hashCode方法 这一原则。否则在Java散列集合类操作中,会存在null的问题。
下一节:这道题纯粹只是考查基础理论知识,对实际开发工作中没有太多的指导意义,毕竟编辑器都有语法提示功能,如果没写正确,会有错误提示。